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Abstract. We study superluminal cyclotron emission by electrons and muons in semiclassical orbits. The
tachyonic line spectra of hydrogenic ions such as H, 56Fe25+, and 238U91+, as well as their muonic counter-
parts pµ−, 56Fe26+µ− and 238U92+µ− are calculated, in particular the tachyonic power transversally and
longitudinally radiated, the total intensity, and the power radiated in the individual harmonics. We also
investigate tachyonic continuum radiation from electrons and protons cycling in the surface and light cylin-
der fields of γ-ray and millisecond pulsars, such as the Crab pulsar, PSR B1509–58, and PSR J0218+4232.
The superluminal spectral densities generated by non-relativistic, mildly relativistic and ultra-relativistic
source particles are derived. We study the parameters determining the global shape of the transversal and
longitudinal densities and the energy scales of the broadband spectrum. The observed cutoff frequency in
the γ-ray band of the pulsars is used to infer the upper edge of the orbital energy, and we conclude that
electrons and nuclei cycling in the surface fields can reach energies beyond the “ankle” of the cosmic ray
spectrum. This suggests γ-ray pulsars as sources of ultra-high energy cosmic rays.

PACS. 41.60.Ap, 11.10.Lm, 36.10.Dr, 98.70.Sa

1 Introduction

Cyclotron and synchrotron radiation by circularly orbiting
sources is a promising radiation mechanism to scrutinize
in the search for superluminal quanta, from atomic or-
bits via storage rings and planetary magnetospheres, to
supernova remnants and pulsars [1]. The same formalism
applies on vastly differing scales, set by the gyroradius, the
magnetic field strength and the orbital energy of the sub-
luminal source particles, usually electrons, muons, protons
and heavier nuclei. Here, we study tachyonic line spectra
of hydrogen-like ions and muonic atoms, as well as contin-
uous X- and γ-ray spectra from electrons and protons in
pulsar magnetospheres. Tachyonic γ-rays do not interact
with microwave background photons, there is no absorp-
tion by electron–positron creation, in stark contrast to
photonic γ-rays. This aside, the observed GeV-cutoff in
the spectra of γ-ray pulsars provides evidence for gyra-
tion energies in the surface fields way beyond the 1019 eV
mark in the cosmic ray spectrum [3].

There are substantial differences between tachyonic
cyclotron/synchrotron radiation and its electromagnetic
counterpart. Tachyonic quanta can be longitudinally po-
larized due to their negative mass square; there is a longi-
tudinal counterpart to the transversal spectral densities.
As for atomic line spectra, we will determine the power
transversally and longitudinally radiated by the tachyonic
cyclotron mechanism, for which there is no electromag-
netic analogue at all. In the ultra-relativistic synchrotron
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limit, the transversal tachyonic spectral density is peaked
close to the tachyon mass at 2 keV and has a slowly decay-
ing tail, which extends well into the GeV region in high
magnetic fields. In contrast, the electromagnetic spectral
peak close to the critical photon frequency is followed
by rapid exponential decay. In the non-relativistic limit
of slowly orbiting sources, electromagnetic cyclotron ra-
diation gives rise to line spectra, radiated in multiples of
the fundamental frequency. The tachyonic counterpart ad-
mits an additional asymptotic spectral parameter, the ra-
tio of tachyon mass and gyrofrequency, that determines
whether the spectrum is discrete or continuous. The most
far-reaching difference is perhaps the absence of radiation
damping outside the lightcone. The Green function of the
superluminal radiation field is time symmetric; there is no
retarded propagator for superluminal wave propagation.
The advanced component of the time symmetric radia-
tion field is turned into the missing half of the retarded
field by virtue of a non-local interaction with a cosmic
absorber field, that supplies the energy of the tachyonic
quanta [4, 5]. There is no slowing-down of the radiating
source by radiation loss, and there is even residual radi-
ation in the limit of infinite gyroradius, from particles in
straight uniform motion. The cosmic absorber provides
a distinguished frame of reference, a frame of absolute
rest, indispensable to render superluminal signal trans-
fer causal. The conceptual consequences of the cosmic ab-
sorber are summarized in the conclusions in Sect. 6.

In Sect. 2, we outline tachyonic cyclotron/synchrotron
radiation theory, and state the multipole expansion of the
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transversal and longitudinal flux vectors and power com-
ponents. In Sect. 3, we study tachyonic cyclotron radiation
from hydrogen-like systems. We consider semiclassical cir-
cular orbits, identify the Bohr radius with the gyroradius,
and infer the gyrofrequency from the orbital speed. Line
spectra arise if the tachyon mass is much smaller than the
gyration frequency. We calculate the power radiated from
hydrogenic ions and muonic atoms, covering a wide Z-
range.

In Sect. 4, we study tachyonic continuum emission, ex-
tending the ultra-relativistic synchrotron densities [1] into
the mildly relativistic regime, and derive the condition
for a continuous tachyonic cyclotron spectrum at non-
relativistic orbital speed. We introduce the energy scales,
the break and critical frequencies defining the global fea-
tures of the broadband spectrum, such as spectral peaks,
oscillations and decay properties. In Sect. 5, we investi-
gate tachyonic synchrotron and cyclotron radiation from
charges cycling in the surface and light cylinder fields of
γ-ray pulsars. We calculate the break and critical frequen-
cies in the tachyonic wideband spectrum, and explain how
the maximal gyration energy sustainable by the pulsars
can be inferred from the cutoff in the γ-ray spectrum. In
Sect. 6, we present our conclusions.

2 Tachyonic cyclotron radiation: multipoles,
power and polarization

We consider a constant magnetic field B = (0, 0, B), B >
0, and an electron or muon with constant speed υ, electric
charge e, and tachyonic charge q on a circular orbit [1]. The
equations of motion read d(γme,µv)/dt = (−e/c)v × B,
where γ = (1 − υ2/c2)−1/2 and e > 0. We thus find
the orbit x(t) = (υ/ωB)(cos(ωBt), sin(ωBt), 0), with gy-
rofrequency ωB := eB/(me,µcγ). Gyroradius and gyrofre-
quency are related by r = υ/ωB . Taking into account that
1 kG · e ≈ 0.29979 MeV/cm, we find

B [G] ≈ 1.6904 × 1014E [MeV]�ωB [MeV],

r[Å] ≈ 1.9733
�ωB [keV]

υ

c
, (2.1)

where E = me,µc2γ is the energy of the orbiting electron,
muon, etc. Clearly, eB = (υ/c)E/r. We use the Heaviside–
Lorentz system, in particular, e2/(4π�c) =: αe ≈ 1/137
and q2/(4π�c) =: αq ≈ 1.0 × 10−13 are the electric
and tachyonic fine structure constants. The tachyon mass,
mt ≈ 2.15 keV/c2, gives a Compton wavelength of λC

t =
2π�/(mtc) ≈ 5.767 Å, and the quotient of tachyonic and
electric fine structure constant reads αq/αe ≈ 1.4×10−11,
all inferred from Lamb shifts in hydrogenic systems [6].
Tachyonic energy �ω and wavelength are related by

λt =
2π�c√

m2
t c

4 + �2ω2
, λt [Å] =

0.012398
σ�ω [MeV]

,

σ :=

√
1 +

m2
t c

4

�2ω2 . (2.2)

λC
t is apparently the largest possible wavelength a tachyon

can attain. σ is the speed υt/c of the tachyonic quanta,
according to �ω = mtc

2(υ2
t /c2 − 1)−1/2. The critical field

for quantum effects to emerge is [7–11],

Bc,e =
m2

ec
3

e�
≈ 4.414 × 1013 G,

Bc,µ =
m2

µ

m2
e

Bc,e ≈ 1.887 × 1018 G, (2.3)

for orbiting electrons and muons, respectively.
We put � = c = 1, denote the tachyonic wave vector

by k = k(ω)k0, with k(ω) =
√

ω2 + m2
t , and define two

further polarization unit vectors,

ε‖ :=
B − k0(k0 · B)
|B − k0(k0 · B)| , ε⊥ := ε‖ × k0, (2.4)

so that k0, ε‖ and ε⊥ constitute an orthonormal triad, and
ε‖ = −ε⊥×k0 . Tachyonic synchrotron radiation from he-
lically moving sources has been studied in [1]; the general
setting [5] is sketched in Sect. 6. Here, we just state the
flux vectors, specialized to circular motion. The frequen-
cies radiated are ωn := nωB , with positive integer n. The
Poynting vectors defining the transversal and longitudinal
flux through a sphere of radius r are

〈
ST

‖,⊥
〉 ∼ q2n

8π2r2

∞∑
n=1

〈
sT

‖,⊥
〉

n
,

〈
SL〉 ∼ q2n

8π2r2

∞∑
n=1

〈
sL〉

n
. (2.5)

The total transversal flux, 〈ST〉 = 〈ST
‖ 〉 + 〈ST

⊥〉, is gener-
ated by the linearly polarized components of the tachyonic
radiation field defined by ε‖,⊥ in (2.4) (n is the coordinate
unit vector). The flux components radiated at ωn in the
(rearranged) multipole expansions (2.5) read

〈
sT

‖
〉

n
= cot2 θ

ω3
Bn3

k(ωn)
J2

n(zn),

〈
sT

⊥
〉

n
= υ2ωBnk(ωn)J ′2

n(zn),〈
sL〉

n
= m2

t

ωBn

k(ωn)
J2

n(zn),

zn :=
υ

ωB
k(ωn) sin θ, (2.6)

where k(ωn) =
√

n2ω2
B + m2

t is the tachyonic wave num-
ber and θ the polar angle (polar axis B). The power
transversally and longitudinally radiated is thus

PT
‖,⊥ = 2πr2

∫ π

0

〈
ST

‖,⊥ · n〉 sin θdθ,

PL = 2πr2
∫ π

0

〈
SL · n〉 sin θdθ. (2.7)

The total transversal power reads PT = PT
‖ + PT

⊥ , and
the total power radiated is P = PT + PL. Interchanging
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summation and integration, we may write

PT
‖,⊥ =

∞∑
n=1

〈
pT

‖,⊥
〉

n
, PL =

∞∑
n=1

〈
pL〉

n
, (2.8)

〈
pT,L

‖,⊥
〉

n
:=

q2

4π

∫ π

0

〈
sT,L

‖,⊥
〉

n
sin θdθ,〈

pT〉
n

:=
〈
pT

‖
〉

n
+
〈
pT

⊥
〉

n
, (2.9)

where the power components 〈pT
‖,⊥〉n and 〈pL〉n are ra-

diated in the nth harmonic nωB . The energy radiated is
drained from the absorber field that breaks the time sym-
metry of the Green function (half-advanced, half-retarded)
outside the lightcone; cf. [4, 5] and Sect. 6. The radiat-
ing particles do not slow down, and they even radiate in
uniform motion (ωB → 0). In the next section, we dis-
cuss tachyonic line spectra and derive explicit asymptotic
formulas for the total power and the power radiated at
the individual frequencies. In Sect. 4, we derive the spec-
tral densities of the continuum radiation, based on the
power components (2.9).

3 Tachyonic line spectra of hydrogenic ions
and muonic atoms

We study tachyonic cyclotron radiation in the limit
m2

t c
4/(�ωB)2 � 1. The notation is explained in Sect. 2,

and the opposite limit is dealt with in Sect. 4. The orbital
speed υ may be relativistic as long as the Lorentz factor
stays moderate (since ωB ∝ 1/γ). This condition for line
spectra is met in heavy hydrogenic ions or muonic atoms
[12,13], where the orbital Lorentz factor does not exceed 2.
In Sect. 3.2, we will also discuss the non-relativistic limit,
where a moderate m2

t c
4/(�ωB)2 ratio is still admissible.

The gyration radii and frequencies are obtained by
Bohr–Sommerfeld quantization. To this end, we start with
the relativistic Coulomb problem. Solving the Hamilton–
Jacobi equation, we find the action S = −Ẽt + Mϕ +
S(r), where

S(r) (3.1)

=
∫ r

rmin

[
2mr

(
Ẽ +

α̃

r

)
− M2

r2 +
1
c2

(
Ẽ +

α̃

r

)2
]1/2

dr.

We consider an attractive Coulomb potential, assuming
mrc

2 > Ẽ > 0, α̃ > 0; more specifically, α̃ = Ze2/(4π),
where e is the electronic charge so that α = e2/(4π�c) ≈
1/137. Z is the charge number of the nucleus and mr the
reduced mass. rmax / min denotes the two positive roots of
the integrand,

rmax / min =
α̃Ẽ(1 ± ε)
m2

r c
4 − Ẽ2

, (3.2)

ε :=


1 −

(
m2

r c
4 − Ẽ2

)
Ẽ2

(
c2M2

α̃2 − 1
)

1/2

.

We consider circular orbits, ε = 0, and find via (3.2)

Ẽ = mrc
2
(

1 − α̃2

c2M2

)1/2

= mrc
2 − 1

2
mrα̃

2

M2 + . . . (3.3)

If we insert this in turn into rmin / max, we obtain the or-
bital radius,

r =
M2

mrα̃

(
1 − α̃2

c2M2

)1/2

. (3.4)

Energy conservation amounts to constant Ẽ = mrc
2γ −

α̃/r, where γ = (1−υ2/c2)−1/2 is the electronic or muonic
Lorentz factor. If we equate this with Ẽ in (3.3) and sub-
stitute the orbital radius r in (3.4), we find the orbital
velocity as υ = α̃/M .

Bohr–Sommerfeld quantization means to put
S(rmax) = π�nr and M = �nϕ, where nr and nϕ

are the radial and azimuthal quantum numbers, adding
up to the principal quantum number nr + nϕ. Zero
eccentricity implies nr = 0, so that nϕ coincides with
the principal quantum number. (nϕ is not to be confused
with the index n labeling multipole contributions to
the tachyonic flux vectors.) The energy levels obtained
from the Dirac equation in a Coulomb potential coincide
with (3.3), if we identify nϕ = j + 1/2 = 1, 2 . . . The
gyrofrequency relates to the quantized velocities and
orbital radii as ωB = υ/r. Hence,

�ωB = mrc
2 α2

Zγ

n3
ϕ

, r =
�

mrc

n2
ϕ

αZγ
,

υ

c
=

αZ

nϕ
, (3.5)

where αZ ≈ Z/137 and γ = (1−α2
Z/n2

ϕ)−1/2 is the Lorentz
factor of the orbiting particle. We will focus on the ground
state, nϕ = 1, so that the Bohr radius reads

r [fm] ≈ 197.327
mrc2 [MeV]

√
1 − α2

Z

αZ
. (3.6)

The quantities in (3.5) and (3.6) are listed in Tables 1 and
2 for some hydrogen-like ions and muonic atoms. Heavy
hydrogenic ions already give a small m2

t c
4/(�ωB)2 ratio,

but this condition is more easily satisfied, and even for
light ions, if the electron is replaced by a muon. The
reduced electron or muon mass, me,µ/(1 + me,µ/mA),
is denoted by mr,e and mr,µ, respectively. Here, mA is
the nuclear mass taken as A atomic mass units, A ·
931.494 MeV/c2, plus mass excess M −A as listed in [14],
minus Z · me. The muon mass is mµ ≈ 105.66 MeV/c2.
We note the muon/electron mass ratio, mµ/me ≈ 206.77,
the tachyon/muon ratio, mt/mµ ≈ 2.035 × 10−5, and the
tachyon/electron ratio, mt/me ≈ 4.207 × 10−3 ≈ 1/238.
In the subsequent calculations, we put � = c = 1.

3.1 The power radiated at large gyrofrequency

We start with the m2
t /ω2

B-expansion of the squared Bessel
functions in (2.6),

J2
n(zn) = J2

n(nη)
(

1 +
1
2

m2
t υ

n2ω2
B

∂

∂υ
log J2

n(nη) + . . .

)
,

(3.7)
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Table 1. Parameters determining tachyonic cyclotron spectra. Reduced electron/muon
mass mrc

2, cf. after (3.6), ground state gyrofrequency �ωB, cf. (3.5), speed σn of tachyonic
quanta radiated at frequency nωB (a shortcut for υt(ωn)/c used throughout Sect. 3); cf.
(2.2) and (3.19). The listed tachyon-mass over gyrofrequency ratio determines whether
the radiated spectrum is discrete or continuous; cf. the beginning of Sect. 3 and the end
of Sect. 4.2

mrc
2

(MeV)
�ωB

(MeV)

(
mtc

2

�ωB

)2

σ1 − 1 σ2 − 1

Hydrogenic ions

H 0.51072 2.7197 × 10−5 6249 78.06 38.54
4He+ 0.51093 1.0884 × 10−4 390.2 18.78 8.927
24Mg11+ 0.51099 3.9335 × 10−3 0.2988 0.1396 0.03667
56Fe25+ 0.51099 0.018735 0.01317 6.563 × 10−3 1.645 × 10−3

138Ba55+ 0.51100 0.093498 5.288 × 10−4 2.644 × 10−4 6.610 × 10−5

208Pb81+ 0.51100 0.22837 8.864 × 10−5 4.432 × 10−5 1.108 × 10−5

238U91+ 0.51100 0.31076 4.786 × 10−5 2.393 × 10−5 5.983 × 10−6

Muonic atoms

pµ− 94.966 5.0572 × 10−3 0.1807 0.08662 0.02234
4He++µ− 102.75 0.021888 9.649 × 10−3 4.813 × 10−3 1.205 × 10−3

24Mg12+µ− 105.16 0.80952 7.054 × 10−6 3.527 × 10−6 8.817 × 10−7

56Fe26+µ− 105.45 3.8660 3.093 × 10−7 1.546 × 10−7 3.866 × 10−8

138Ba56+µ− 105.57 19.317 1.239 × 10−8 6.194 × 10−9 1.549 × 10−9

208Pb82+µ− 105.60 47.194 2.075 × 10−9 1.038 × 10−9 2.594 × 10−10

238U92+µ− 105.61 64.226 1.121 × 10−9 5.603 × 10−10 1.401 × 10−10

Table 2. Tachyonic cyclotron radiation, semiclassical orbits, and the magnetic field anal-
ogy. Ground state Bohr radius r, cf. (3.6), tachyonic wavelength λt(ωB) at gyrofrequency
(the first harmonic radiated), cf. (2.2), electronic/muonic orbital speed υ (in ground state),
cf. (3.5), and corresponding Lorentz factor γ, magnetic field B sustaining a gyrofrequency
ωB and orbital energy E = me,µc2γ (in the absence of a Coulomb potential); cf. (2.1)

r(nϕ = 1)
(fm)

λt(ωB)
(Å)

B (G) υ/c γ − 1

Hydrogenic ions

H 52945 5.766 2.349 × 109 7.2974 × 10−3 2.663 × 10−5

4He+ 26460 5.759 9.403 × 109 0.014595 1.065 × 10−4

24Mg11+ 4393.0 2.766 3.411 × 1011 0.087568 3.856 × 10−3

56Fe25+ 1998.3 0.6575 1.648 × 1012 0.18973 0.01850
138Ba55+ 862.45 0.1326 8.849 × 1012 0.40865 0.09566
208Pb81+ 517.05 0.05429 2.462 × 1013 0.59838 0.2481
238U91+ 426.29 0.03990 3.622 × 1013 0.67136 0.3493

Muonic atoms

pµ− 284.74 2.256 9.033 × 1013 7.2974 × 10−3 2.663 × 10−5

4He++µ− 131.58 0.5637 3.910 × 1014 0.014595 1.065 × 10−4

24Mg12+µ− 21.346 0.01532 1.451 × 1016 0.087568 3.856 × 10−3

56Fe26+µ− 9.6840 3.207 × 10−3 7.033 × 1016 0.18973 0.01850
138Ba56+µ− 4.1745 6.418 × 10−4 3.780 × 1017 0.40865 0.09566
208Pb82+µ− 2.5020 2.627 × 10−4 1.052 × 1018 0.59838 0.2481
238U92+µ− 2.0627 1.930 × 10−4 1.548 × 1018 0.67136 0.3493
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where η := υ sin θ, and the same for J ′2
n(zn). In this way

we can expand the transversal flux components 〈sT
‖,⊥〉n in

(2.5) as〈
sT

‖
〉

n
= n2ω2

B cot2 θJ2
n(nη)

+
1
2
m2

t cot2 θ

(
υ

∂J2
n(nη)
∂υ

− J2
n(nη)

)
+ O(m4

t ),〈
sT

⊥
〉

n
= n2ω2

Bυ2J ′2
n(nη) (3.8)

+
1
2
m2

t υ
2

(
υ

∂J ′2
n(nη)
∂υ

+ J ′2
n(nη)

)
+ O(m4

t ).

The longitudinal flux at ωn reads〈
sL〉

n
= m2

t J
2
n(nη) + O(m4

t ). (3.9)

The multipole summations in (2.5) can be reduced to
Kapteyn series [15],

K0 :=
∞∑

n=1

J2
n(nη) =

1
2

1√
1 − η2

− 1
2
,

K2 :=
∞∑

n=1

n2J2
n(nη) =

η2(η2 + 4)
16(1 − η2)7/2 ,

K−2 :=
∞∑

n=1

n−2J2
n(nη) =

η2

4
. (3.10)

By applying the identity

J ′2
n(nz) =

[
1

2n2

(
d2

dz2 +
d

zdz

)
+ 1 − 1

z2

]
J2

n(nz),

(3.11)
we obtain

K
(1)
0 :=

∞∑
n=1

J ′2
n(nη) =

1 −
√

1 − η2

2η2 ,

K
(1)
2 :=

∞∑
n=1

n2J ′2
n(nη) =

4 + 3η2

16(1 − η2)5/2 , (3.12)

and we note

υ
∂K0

∂υ
=

η2

2(1 − η2)3/2 ,

υ
∂K

(1)
0

∂υ
=
(

1
η2 − 1

2

)
1√

1 − η2
− 1

η2 . (3.13)

The transversal flux components can thus be summed to

∞∑
n=1

〈
sT

‖
〉

n
=

ω2
B

16
cot2 θ

η2(η2 + 4)
(1 − η2)7/2

+
m2

t

4
cot2 θ

(
η2

(1 − η2)3/2 − 1√
1 − η2

+ 1

)

+ O

(
m4

t

ω2
B

)
,

∞∑
n=1

〈
sT

⊥
〉

n
=

ω2
Bυ2

16
3η2 + 4

(1 − η2)5/2 (3.14)

+
m2

t

4 sin2 θ

(
1√

1 − η2
− 1

)
+ O

(
m4

t

ω2
B

)
,

and the longitudinal summation gives

∞∑
n=1

〈
sL〉

n
=

m2
t

2

(
1√

1 − η2
− 1 + O

(
m2

t

ω2
B

))
. (3.15)

The integrations in (2.7) are elementary if we use (3.14)
and (3.15), with η = υ sin θ. The transversal power com-
ponents in (2.7) can be assembled as

PT
‖ =

q2

4π
ω2

B

[
υ2(2 − υ2)
12(1 − υ2)2

+
m2

t

ω2
B

(
1
2υ

log
1 + υ

1 − υ
+

1
4

log(1 − υ2) − 1
)

+ O

(
m4

t

ω4
B

)]
, (3.16)

PT
⊥ =

q2

4π
ω2

B

[
υ2(6 + υ2)
12(1 − υ2)2

− 1
4

m2
t

ω2
B

log(1 − υ2)

+ O

(
m4

t

ω4
B

)]
.

Restoring units, we may write PT = PT
‖ + PT

⊥ as

PT = αq�ω2
B

[
2
3

υ2/c2

(1 − υ2/c2)2
(3.17)

+
m2

t c
4

�2ω2
B

(
c

2υ
log

1 + υ/c

1 − υ/c
− 1
)

+ O

(
m4

t

ω4
B

)]
,

where αq = q2/(4π�c) is the tachyonic fine structure
constant defined after (2.1). The longitudinally radiated
power (2.7) reads

PL = αq
m2

t c
4

�

(
1
2

c

υ
log

1 + υ/c

1 − υ/c
− 1 + O

(
m2

t

ω2
B

))
.

(3.18)
These powers PT,L are listed in Table 3 for various hy-

drogenic ions and muonic atoms.

3.2 The power radiated at small orbital velocity

We turn to non-relativistic orbital velocities, and calcu-
late the power radiated in a υ2/c2-expansion. We de-
fine, cf. (2.2),

k(ωn) =
nωB

c
σn, σn :=

√
1 +

m2
t c

4

�2ω2
Bn2 , (3.19)

and we will occasionally write kn for k(ωn), ωn = nωB .
The expansion parameter turns out to be σ1υ/c squared,
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Table 3. The power superluminally radiated. Transversal/longitudinal power
〈
pT,L〉

1 radiated at the
fundamental frequency ωB, power

〈
pT,L〉

2 radiated at the second harmonic 2ωB, cf. (3.24) and (3.26),
total power PT,L transversally/longitudinally radiated, calculated via (3.17) and (3.18). The extend to
which

〈
pT,L〉

1 and
〈
pT,L〉

2 add up to PT,L indicates the quality of the non-relativistic approximation
(3.25) and (3.27), which apparently breaks down for the 208Pb and 238U ground states

〈
pT〉

1

(MeV s−1)

〈
pT〉

2

(MeV s−1)

〈
pL〉

1

(MeV s−1)

〈
pL〉

2

(MeV s−1)
PT

(MeV s−1)
PL

(MeV s−1)

Hydrogenic ions

H 2.734 × 10−4 3.152 × 10−5 0.9199 0.03283 – –
4He+ 4.887 × 10−3 1.278 × 10−4 0.9698 8.313 × 10−3 – –
24Mg11+ 13.64 0.2464 2.042 0.01227 14.01 1.803
56Fe25+ 1270 111.1 8.420 0.2439 1386 8.614
138Ba55+ 1.380 × 105 5.927 × 104 37.80 5.224 2.131 × 105 43.55
208Pb81+ 1.620 × 106 1.625 × 106 77.82 24.01 4.590 × 106 108.3
238U91+ 3.614 × 106 4.769 × 106 96.00 38.05 1.461 × 107 148.4

Muonic atoms

pµ− 0.1499 1.884 × 10−5 0.01355 5.675 × 10−7 0.1511 0.01317
4He++µ− 10.38 5.303 × 10−3 0.05010 8.528 × 10−6 10.39 0.04940
24Mg12+µ− 5.074 × 105 9.367 × 103 1.792 0.01101 5.169 × 105 1.803
56Fe26+µ− 5.371 × 107 4.708 × 106 8.366 0.2427 5.864 × 107 8.614
138Ba56+µ− 5.890 × 109 2.530 × 109 37.79 5.223 9.096 × 109 43.55
208Pb82+µ− 6.921 × 1010 6.941 × 1010 77.82 24.01 1.960 × 1011 108.3
238U92+µ− 1.544 × 1011 2.037 × 1011 96.00 38.04 6.241 × 1011 148.4

cf. (3.23), (3.25) and (3.27), which imposes a restriction
on the size of the ratio mtc

2/(�ωB).
We start with the υ/c-expansion of the flux compo-

nents (2.6). In this limit, we can use the ascending series
of the squared Bessel functions,

J2
1 (z) = (z2/4)(1 − z2/4 + . . .),

J2
2 (z) = (z4/64) + . . . ,

J2
n(z) = O(z2n),

J ′2
1(z) = 1/4(1 − 3z2/4 + . . .),

J ′2
2(z) = z2/16 + . . . ,

J ′2
n(z) = O(z2n−2), (3.20)

so that the first two flux components (radiated at ωB and
2ωB) give

〈
sT

‖
〉
1+2 =

1
4
ωBυ2k1 cos2 θ

×
[
1 +

(
1
2

k3
2

k1
− 1

4
k2
1

)
υ2

ω2
B

sin2 θ + O(υ4)
]

,

〈
sT

⊥
〉
1+2 =

1
4
ωBυ2k1 (3.21)

×
[
1 +

(
1
2

k3
2

k1
− 3

4
k2
1

)
υ2

ω2
B

sin2 θ + O(υ4)
]

,

where kn = k(nωB) and � = c = 1. Only the k3
2-terms

stem from 〈sT
‖,⊥〉2, and the components 〈sT

‖,⊥〉n, n > 2,

radiated at higher frequencies nωB , do not contribute to
the Poynting vectors (2.5) in the indicated order in υ. As
for the longitudinal power radiated, cf. (2.6),

〈
sL〉

1+2 =
m2

t υ
2k1

4ωB
sin2 θ (3.22)

×
[
1 +

(
1
8

k3
2

k1
− 1

4
k2
1

)
υ2

ω2
B

sin2 θ + O(υ4)
]

.

Restoring the units, we find the transversal power, cf. (2.8)
and (2.9),

PT
‖ ∼ 〈pT

‖
〉
1+2 =

1
6
αq�ω2

Bσ1
υ2

c2

×
[
1 +

(
8
5

σ3
2

σ3
1

− 1
10

)
σ2

1
υ2

c2 + O(υ4)
]

,

PT
⊥ ∼ 〈pT

⊥
〉
1+2 =

1
2
αq�ω2

Bσ1
υ2

c2 (3.23)

×
[
1 +

(
8
3

σ3
2

σ3
1

− 1
2

)
σ2

1
υ2

c2 + O(υ4)
]

.

Only the (σ2/σ1)3-term stems from the second harmonic,
and higher frequencies do not affect the indicated order;
cf. (3.20). The transversal (unpolarized) power compo-
nents 〈pT〉n = 〈pT

‖ 〉n + 〈pT
⊥〉n, radiated in the first and

second harmonic,

〈
pT〉

1 =
2
3
αq�ω2

Bσ1
υ2

c2

(
1 − 2

5
σ2

1
υ2

c2 + O(υ4)
)

,
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Table 4. Tachyonic number counts. The counts at frequency nωB are
calculated as

〈
nT,L〉

n
=

〈
pT,L〉

n
/(�ωBn), cf. Sect. 3.2, with power compo-

nents in the non-relativistic approximation (3.24) and (3.26); cf. Table 3.〈
nT,L〉

1 is the number of superluminal quanta radiated per second at gy-
rofrequency, likewise

〈
nT,L〉

2, transversally/longitudinally radiated at the
second harmonic. The estimates given for 208Pb and 238U are merely illus-
trative, as the charge numbers are already too high for the non-relativistic
limit to apply; cf. (3.5)

〈
nT〉

1

(s−1)

〈
nT〉

2

(s−1)

〈
nL〉

1

(s−1)

〈
nL〉

2

(s−1)

Hydrogenic ions

H 10.05 1.159 3.382 × 104 1207
4He+ 44.90 1.174 8910 76.37
24Mg11+ 3468 62.64 519.0 3.119
56Fe25+ 6.775 × 104 5931 449.4 13.02
138Ba55+ 1.476 × 106 6.340 × 105 404.2 55.87
208Pb81+ 7.096 × 106 7.117 × 106 340.8 105.1
238U91+ 1.163 × 107 1.535 × 107 308.9 122.4

Muonic atoms

pµ− 29.64 3.725 × 10−3 2.678 1.122 × 10−4

4He++µ− 474.4 0.2423 2.289 3.896 × 10−4

24Mg12+µ− 6.268 × 105 1.157 × 104 2.214 0.01360
56Fe26+µ− 1.389 × 107 1.218 × 106 2.164 0.06277
138Ba56+µ− 3.049 × 108 1.309 × 108 1.956 0.2704
208Pb82+µ− 1.466 × 109 1.471 × 109 1.649 0.5088
238U92+µ− 2.403 × 109 3.172 × 109 1.495 0.5924

〈
pT〉

2 =
8
5
αq�ω2

Bσ3
2
υ4

c4 (1 + O(υ2)), (3.24)

add up to the total transversal power PT = PT
‖ + PT

⊥ ,

PT =
2
3
αq�ω2

Bσ1
υ2

c2

[
1 +

(
12
5

σ3
2

σ3
1

− 2
5

)
σ2

1
υ2

c2 + O(υ4)
]

.

(3.25)
The power components longitudinally radiated at ωB

and 2ωB ,

〈
pL〉

1 =
1
3

αqm
2
t c

4

�
σ1

υ2

c2

(
1 − 1

5
σ2

1
υ2

c2 + O(υ4)
)

,

〈
pL〉

2 =
4
15

αqm
2
t c

4

�
σ3

2
υ4

c4 (1 + O(υ2)), (3.26)

result in the longitudinal power,

PL =
1
3

αqm
2
t c

4

�
σ1

υ2

c2

[
1 +

(
4
5

σ3
2

σ3
1

− 1
5

)
σ2

1
υ2

c2 + O(υ4)
]

.

(3.27)

The longitudinal/transversal power ratio reads PL/PT ∼
m2

t c
4/(2�

2ω2
B), in leading order. As a consistency check,

we note that the m2
t /ω2

B-expansion of the powers (3.23),
(3.25) and (3.27) coincides with the υ2-expansion of those

in (3.16)–(3.18). The power components 〈pT,L〉n=1,2 ra-
diated in the first and second harmonic, cf. (3.24) and
(3.26), are listed in Table 3. The tachyonic number count,
〈nT,L〉n := 〈pT,L〉n/(�ωBn) (tachyons emitted per unit
time at frequency ωn), is listed in Table 4 for the first two
harmonics. The intensity of the tachyonic cyclotron lines
is roughly by a factor of αq/αe weaker than the spon-
taneous electromagnetic emission intensity. Nevertheless,
the longitudinal polarization and the predicted precise lo-
cation of these lines can be helpful in sifting out superlu-
minal quanta.

In the tables, we focus exclusively on ground states.
Moderately excited states can be dealt with analogously,
cf. (3.5), but Rydberg states result in continuous spec-
tral densities. The quantities in Tables 1 and 2 scale as
�ωB ∝ n−3

ϕ , σ1,2 ∝ n3
ϕ, r ∝ n2

ϕ, λt ∝ 1, B ∝ n−3
ϕ ,

υ/c ∝ n−1
ϕ , and γ − 1 ∝ n−2

ϕ . Therefore, neither the
condition mtc

2/(�ωB) � 1, cf. (3.17) and (3.18), nor
σ1υ/c � 1, cf. after (3.19), can be met in highly ex-
cited states. In the next section, we consider the con-
tinuous spectrum, the classical version of tachyonic syn-
chrotron and cyclotron radiation, which applies to orbital
speeds υ/c > mt/(2me,µ); otherwise quantum effects will
emerge [16]. As the orbital velocities υ/c = αZ/nϕ are
very low, we will not consider Rydberg atoms here.
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4 Tachyonic cyclotron densities

We investigate the cross-over from the non-relativistic cy-
clotron to the ultra-relativistic synchrotron regime [17].
The key to the transversal and longitudinal spectral den-
sities is the power 〈pT,L

‖,⊥〉n radiated through the individual

flux components 〈sT,L
‖,⊥〉n at high n; cf. (2.9). We start with

the Schott identities [18] for transversal radiation,

t‖n(x) :=
∫ π

0
J2

n(x sin θ) cot2 θ sin θdθ

= 2
∫ 2x

0
z−1J2n(z)dz − 1

x

∫ 2x

0
J2n(z)dz,

t⊥n (x) :=
∫ π

0
J ′2

n(x sin θ) sin θdθ

=
2
x

J ′
2n(2x) +

1
x

∫ 2x

0
J2n(z)dz

− 2
n2

x2

∫ 2x

0
z−1J2n(z)dz, (4.1)

and the longitudinal power components can be dealt with
analogously,

ln(x) :=
∫ π

0
J2

n(x sin θ) sin θdθ =
1
x

∫ 2x

0
J2n(z)dz. (4.2)

The asymptotic evaluation of these integrals depends on
whether the ratio x/n is smaller or larger than 1. This sep-
arates the spectrum into a high- and low-frequency band.

4.1 High-frequency radiation

We consider the tangent (Debye) approximation of the
Bessel functions in (4.1) and (4.2), assuming at first
x/n < 1, which defines the high-frequency regime. In this
approximation [17,19],

Jn+k(x) ∼ (1 − x2/n2)−1/4
√

2πn

(
x/n

1 +
√

1 − x2/n2

)n+k

× exp
(
n
√

1 − x2/n2
)(

1 + O

(
1
ñ

))
, (4.3)

valid for ñ := n(1 − x2/n2)3/2 	 1. Here, k is a small
integer, |k| � n, and apparently x/n < 1 is required.
We note

J ′
n+k(x) ∼ n

x

√
1 − x2/n2Jn+k(x),∫ x

0
Jn+k(x)dx ∼ x

n

Jn+k(x)√
1 − x2/n2

, (4.4)

∫ x

0

Jn+k(x)
x

dx ∼ 1
n

Jn+k(x)√
1 − x2/n2

,

where Jn(x) on the right-hand side is meant in the ap-
proximation (4.3). This can easily be checked by differen-
tiation, using the exact identities 2J ′

n = Jn−1 −Jn+1 and

(2n/x)Jn = Jn−1 + Jn+1. We thus find, cf. (4.1),

t‖n(x) ∼ J2n(2x)
n

· O

(
1
ñ

)
,

t⊥n (x) ∼ J2n(2x)
n

n2

x2

√
1 − x2/n2,

ln(x) ∼ J2n(2x)
n
√

1 − x2/n2
, (4.5)

with J2n(2x) as in (4.3). By virtue of (2.6) and (2.9),

〈
pT〉

n
=

q2

4π

(
ω3

Bn3

c2k(ωn)
t‖n(x) +

υ2

c2 ωBnk(ωn)t⊥n (x)
)

,

(4.6)〈
pL〉

n
=

q2

4π
m2

t c
2ωBn

�2k(ωn)
ln(x), x :=

υk(ωn)
ωB

, (4.7)

so that the above x/n ratio reads

x

n
= σ(ωn)

υ

c
, σ(ω) :=

√
1 +

m2
t c

4

�2ω2 . (4.8)

σ is the speed υt/c of the tachyonic quanta at frequency
ωn := ωBn, and k(ω) = (ω/c)σ(ω); cf. (3.19). The tachy-
onic wavelength λt is obtained via (2.2), by identifying
ω = ωn. This identification, the continuum limit, will be
carried out whenever convenient. The condition x/n < 1
covers the high-frequency regime, ω > ωb, where

�ωb := mtc
2
√

γ2 − 1 (4.9)

is the break energy. The low-frequency band, ω < ωb,
is dealt with in Sect. 4.2. γ is the Lorentz factor of the
orbiting source, so that υ/c =

√
γ2 − 1/γ and σ(ωb) =

c/υ.
We use a hyperbolic parametrization [19] of the tan-

gent approximation (4.3), defining coshαn := n/x, αn >
0. Hence,

tanhαn =

√
1 − σ2(ωn)

υ2

c2 ,

αn = log
1 +

√
1 − σ2(ωn)υ2/c2

σ(ωn)υ/c
, (4.10)

J2n(2x) ∼ exp(−2n(αn − tanhαn))√
4πn tanhαn

.

The criterion for the applicability of the tangent approxi-
mation stated after (4.3) reads ω/ωB 	 γ3

∞(ω), where

γ∞(ω) :=
1√

1 − σ2(ω)υ2/c2
≡ γ√

1 − ω2
b/ω2

. (4.11)

ωb is the break frequency (4.9), and the subscript ∞ in-
dicates the high-frequency regime ω > ωb.

We may thus write the densities (4.6) and (4.7) as
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〈
pT〉

n
∼ αq�ω2

B

2
√

π

√
n

σ

1√
γ∞

(4.12)

× exp
[
−2n

(
1
2

log
γ∞ + 1
γ∞ − 1

− 1
γ∞

)]
,

〈
pL〉

n
∼ m2

t c
4γ2

∞
�2ω2

Bn2

〈
pT〉

n
, (4.13)

where we used (4.5), (4.10) and (4.11). σ and γ∞
are taken at ωn, and αq = q2/(4π�c) is the tachy-
onic fine structure constant as defined after (2.1). The
t
‖
n(x) polarization component in (4.6) does not con-

tribute in leading order. We use a continuum approx-
imation for the frequency, writing ω = ωn = ωBn,
and 〈pT,L〉ndn ≈ pT,L

∞ (ω)dω, with the continuous spec-
tral densities pT,L

∞ (ω) := ω−1
B 〈pT,L〉n=ω/ωB

. In (4.12) and
(4.13), we thus put n = ω/ωB . The tachyonic number
count (tachyons emitted per unit time) is nT,L

∞ (ω) :=
pT,L

∞ (ω)/(�ω).
We define, cf. (4.12),

δ∞ := 3γ3
∞

(
1
2

log
γ∞ + 1
γ∞ − 1

− 1
γ∞

)
,

ξ∞ :=
2

3γ3∞

ω

ωB
δ∞, (4.14)

and keep γ fixed. If ω → ωb, then γ∞ → ∞, cf. (4.11), and
δ∞ = 1 + (3/5)γ−2

∞ + . . ., so that ξ∞ → 0. If ω → ∞, then
γ∞ → γ and ξ∞ → ∞. To connect with the synchrotron
regime, we note the ultra-relativistic spectral functions [1],

L∞(ξ) :=
1√
3π

∫ ∞

ξ

K1/3(x)dx,

F∞(ξ) :=
1√
3π

∫ ∞

ξ

K5/3(x)dx

=
2√
3π

K2/3(ξ) − L∞(ξ), (4.15)

which admit the ξ → ∞ limit (F∞, L∞)(ξ)∼(6πξ)−1/2e−ξ.
In this limit, we can identify

pT
∞(ω) ∼ αq�ω

√
δ∞

σγ2∞
F∞(ξ∞),

pL
∞(ω) ∼ αq

m2
t c

4

�ω

√
δ∞
σ

L∞(ξ∞), (4.16)

where σ(ω) and γ∞(ω) are defined in (4.8) and (4.11),
and δ∞ and ξ∞ in (4.14). These densities extend into the
ultra-relativistic synchrotron regime via the exact spectral
functions (4.15); cf. Sect. 4.3.

4.2 Low-frequency radiation

To obtain the spectral densities in the low-frequency band,
ω < ωb, below the break frequency (4.9), we use the Debye
approximation of the Bessel functions in (4.1) and (4.2)
for x/n > 1 [19],

Jn+k(x) ∼ An(x) cos Bn,k(x)(1 + O(1/ñ)),

An(x) :=
√

2/(πn)(x2/n2 − 1)−1/4,

Bn,k(x) := n
(√

x2/n2 − 1 − arccos(n/x)
)

− π/4 − k arccos(n/x). (4.17)

This is valid for ñ := n(x2/n2 − 1)3/2 	 1, and 0 <
arccos < π/2. Analogously to (4.4),

J ′
n+k(x) ∼ −n

x

√
x2/n2 − 1An(x) sin Bn,k(x),∫ ∞

x

Jn+k(z)dz ∼ −x

n

An(x) sin Bn,k(x)√
x2/n2 − 1

,

∫ ∞

x

Jn+k(z)
z

dz ∼ − 1
n

An(x) sin Bn,k(x)√
x2/n2 − 1

. (4.18)

We will need these formulas only for k = 0, but
k = ±1 is useful to check for consistency, if we em-
ploy the (integrated) identities for Bessel functions men-
tioned after (4.4). We also note

∫∞
0 Jn(x)dx = 1 and∫∞

0 Jn(x)x−1dx = 1/n, which allows one to rewrite the
Schott identities (4.1) and (4.2) in a way that the inte-
grals in (4.16) can be substituted. We find

t‖n(x) ∼ 1
n

(
1 − n

x

)
,

t⊥n (x) ∼ 1
x

(
1 − n

x

)
− 1

n

n2

x2

√
x2/n2 − 1A2n(2x) sin B2n,0(2x),

ln(x) ∼ 1
x

(
1 +

x

n

A2n(2x) sin B2n,0(2x)√
x2/n2 − 1

)
, (4.19)

where we use x/n = σ(ωn)υ/c, with

σ(ω) =
√

1 + m2
t c

4/(�2ω2)

as in (4.8). The counterpart to (4.11) is the shortcut

γ0(ω) :=
1√

σ2(ω)υ2/c2 − 1
≡ γ√

ω2
b/ω2 − 1

, (4.20)

where the subscript zero indicates the low-frequency
regime x/n > 1 or ω < ωb, with ωb = (mtc

2/�)
√

γ2 − 1.
The condition ñ 	 1 for the applicability of the tangent
approximation, cf. after (4.17), reads ω/ωB 	 γ3

0(ω).
In (4.19), we may thus substitute,

A2n(2x) =
√

γ0

πn
,

B2n,0(2x) = 2n

(
1
γ0

− arctan
1
γ0

)
− π

4
. (4.21)

γ0 is taken at ωn, 0 < arctan < π/2, and arccos(c/(συ)) =
arctan(1/γ0). Hence, below the break frequency ωb, the
spectral densities (4.6) and (4.7) can be assembled as

〈
pT〉

n
∼ αq�ω2

Bn

σ2γ2
0

c

υ

(
1 − υ

c

σγ
3/2
0√
πn

sin B2n,0

)
, (4.22)
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〈
pL〉

n
∼ αqm

2
t c

4

�nσ2

c

υ

(
1 +

υ

c

σγ
3/2
0√
πn

sin B2n,0

)
, (4.23)

with B2n,0 in (4.21) substituted. Finally we pass to the
continuum limit, pT,L

0 (ω) = ω−1
B 〈pT,L〉n=ω/ωB

; cf. after
(4.13).

To connect to the synchrotron densities, we use the
ultra-relativistic spectral functions [1],

L0(ξ) :=
1
3

∫ ∞

ξ

(J−1/3(x) + J1/3(x))dx

=
1
3

(
2 −

∫ ξ

0
(J−1/3(x) + J1/3(x))dx

)
,

F0(ξ) := −1
3

∫ ∞

ξ

(J−5/3(x) + J5/3(x))dx

=
2
3
(J−2/3(ξ) − J2/3(ξ)) − L0(ξ), (4.24)

and their ξ → ∞ limit, (F0, L0)(ξ) ∼ −√2/(3πξ) sin(ξ −
π/4). We define, cf. (4.14),

δ0 := 3γ3
0

(
1
γ0

− arctan
1
γ0

)
,

ξ0(ω) :=
2

3γ3
0

ω

ωB
δ0, (4.25)

with γ0(ω) in (4.20). γ is kept fixed. If ω → ωb, then γ0 →
∞ and δ0 = 1 − (3/5)γ−2

0 + . . . so that ξ0 → 0. If ω → 0,
then γ0 ≈ (ω/ωb)γ and δ0 = 3γ2

0(1 − (π/2)γ0 + . . .), so
that ξ0 ≈ (2/γ)(ωb/ωB). By making use of the shortcuts
δ0 and ξ0 in (4.25) and the ξ → ∞ limit of the spectral
functions (4.24), we may write the densities (4.22) and
(4.23) as

pT
0 (ω) ∼ αq

�ω

σ2γ2
0

c

υ

(
1 +

υ

c
σ
√

δ0F0 (ξ0)
)

, (4.26)

pL
0 (ω) ∼ αq

m2
t c

4

�ωσ2

c

υ

(
1 − υ

c
σ
√

δ0L0 (ξ0)
)

. (4.27)

This extends the densities (4.16) into the low-frequency
band ω < ωb. The cross-over into the synchrotron regime
is effected by substituting the exact spectral functions
(4.24), rather than their ξ → ∞ limit, into the densities
(4.26) and (4.27); cf. Sect. 4.3.

The critical frequency of electromagnetic synchrotron
radiation relates to the gyrofrequency as ωc := (3/2)γ3ωB

[20]. The critical tachyon frequency is ωct := ωb
√

κ, where
κ := ωb/ωc. If κ � 1 and

√
κγ 	 1, then ξ0(ωct) ≈ 1,

cf. (4.25), in this way ωct is defined; cf. the captions of
Figs. 1–3. In [2], we denoted the critical tachyon frequency
by ωmin. In strong magnetic fields, the transversal density
admits a minimum, which is located in the vicinity of ωct.

By dropping the sinB2n,0-terms in (4.22) and (4.23)
or, for that matter, the F0- and L0-terms in (4.26) and
(4.27), we recover the limit of infinite orbital radius,
cf. (5.1), i.e. the spectral densities of a uniformly mov-
ing charge [16],

Fig. 1. Tachyonic spectral density pT
0,∞(ω), cf. (4.33) and

(4.35), in the surface field B = 3.78×1012 G of the Crab pulsar.
The indicated electronic Lorentz factor corresponds to kmax =
10.7, that is, an electronic orbital energy of E = 1010.7 GeV;
cf. Table 5 and after (5.3). (B and E are input) Only the low-
frequency density pT

0 (ω) is depicted, as the break frequency is
at ωb ≈ 2.1×1014 keV; cf. (4.9) and (5.2). At this field strength
and Lorentz factor, the longitudinal density pL

0 (ω), cf. (4.36),
is undistinguishable from the plotted transversal pT

0 (ω) in the
shown energy range. It also coincides with the ultra-relativistic
synchrotron densities (4.41) and (4.42). At this resolution, the
plot also coincides with that of the uniform densities pT,L(ω)
in (4.28) and (4.29). The criterion ∆ � 1 for a continuous
spectrum to arise, cf. (4.30), is amply satisfied, ∆ ≈ 4.8×1012.
The Lorentz factor considered here corresponds to the high-
est electronic orbital energies attained in the surface field, cf.
after (5.3), with a gyrofrequency of ωB ≈ 4.47 × 10−13 keV,
cf. the beginning of Sect. 2 and (5.1), and an orbital radius
of R ≈ 4.4 × 104 cm; cf. (5.1). The spectral peak is deter-
mined by the tachyon mass, mt ≈ 2.15 keV, cf. the beginning
of Sects. 2 and 5, followed by an extended spectral tail with
power-law decay; cf. (4.28) and (4.29). At the tachyon mass, we
find pT,L(mt)/αq ≈ 1.075 keV. The plotted density is rescaled
with the tachyonic fine structure constant αq; cf. after (2.1).
The critical tachyon frequency is at ωct ≈ 3.85×106 keV, cf. af-
ter (4.27) and (5.3), and ξ0(ωct) ≈ 0.9997; cf. (4.25) and after
(4.27). It is only at about this frequency that the transver-
sal and longitudinal densities start to differ, pT(ωct)/αq ≈
8.3 × 10−7 keV and pL(ωct)/αq ≈ 1.2 × 10−6 keV; cf. (4.35)
and (4.36)

pT(ω) ∼ αqm
2
t c

4
�ω

�2ω2 + m2
t c

4

(
γ2 − 1 − �

2ω2

m2
t c

4

)
1

γ
√

γ2 − 1
,

(4.28)

pL(ω) ∼ αqm
2
t c

4
�ω

�2ω2 + m2
t c

4

γ√
γ2 − 1

. (4.29)

These densities apply in the low-frequency regime, ω <
ωb, uniformly moving charges do not radiate above the
break frequency. γ is the Lorentz factor of the source, and
υ/c > mt/(2msource) is required for the classical densities
to be applicable [16]. The terms containing the spectral
functions in (4.26) and (4.27) stand for the curvature ra-
diation, which shows in oscillations in the spectral densi-
ties. The condition for the sinB2n,0-terms in (4.22) and
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Fig. 2. Transversal tachyonic spectral density pT
0 (ω), cf. (4.35),

in the surface field of the Crab pulsar, with electronic or-
bital energy E = 10 GeV. The indicated electronic Lorentz
factor is much smaller than in Fig. 1, but still in the ultra-
relativistic regime, so that the plot coincides with the syn-
chrotron density (4.41). The dashed curve is the distribution
generated in straight uniform motion, pT(ω) in (4.28), the os-
cillation being superimposed by the magnetic field. Gyrofre-
quency and gyroradius read ωB ≈ 2.24 × 10−3 keV and R ≈
8.8 × 10−6 cm. We refrain from plotting the longitudinal den-
sity pL

0 (ω) in (4.36), which is very similar, with slightly shifted
oscillations, cf. the cockscomb distributions in Figs. 3 and 4,
where the Lorentz factor is lower and the difference becomes
more pronounced. At the tachyon mass, we find pT(mt)/αq ≈
1.065 keV and pL(mt)/αq ≈ 1.085 keV. The critical frequency
is ωct ≈ 54.4 keV so that ξ0(ωct) ≈ 0.9991, cf. after (4.27),
pT(ωct)/αq ≈ 0.059 keV and pL(ωct)/αq ≈ 0.082 keV. The
break frequency is at ωb ≈ 4.2 × 104 keV. The criterion ∆ � 1
for a continuous spectrum ist satisfied: ∆ ≈ 960

(4.23) to be negligible is apparently (υ/c)2σ2γ3
0 � ω/ωB .

If ω � ωb, we have γ0 ∼ (c/υ)�ω/(mtc
2), so that the

mentioned condition is tantamount to

∆ :=
υ

c

mtc
2

�ωB
	 1. (4.30)

This is just the opposite limit discussed in Sect. 3 and
readily understood. The bulk of the spectral densities is
roughly located at (υ/c)mtc

2. For the continuum approx-
imation to be applicable to the frequencies nωB , the fre-
quency of the spectral peak must be much larger than
ωB .

4.3 Extension of the ultra-relativistic spectral densities
into the mildly relativistic and non-relativistic regimes

The spectral functions (4.15) and (4.24) can be expressed
by Airy integrals [1, 19],

F∞(ξ) = −2
z
Ai′(z) −

∫ ∞

z

Ai(x)dx,

L∞(ξ) =
∫ ∞

z

Ai(x)dx, (4.31)

Fig. 3. Transversal tachyonic spectral density pT
0 (ω) in (4.35),

in the surface field of the Crab pulsar, with electronic or-
bital energy E = 1 GeV. The dashed curve is the distribu-
tion pT(ω) in (4.28), corresponding to straight uniform motion
in the zero magnetic field limit, with the same Lorentz fac-
tor. Gyrofrequency and gyroradius read ωB ≈ 0.0224 keV and
R ≈ 8.8 × 10−7 cm. The spectral peak is still located at about
the tachyon mass, pT(mt)/αq ≈ 1.039 keV. Break and criti-
cal frequency read ωb ≈ 4.2 × 103 keV and ωct ≈ 17.2 keV,
respectively. We note ξ0(ωct) ≈ 0.991, cf. after (4.27), and
pT(ωct)/αq ≈ 0.18 keV. The criterion for a continuous spec-
trum is still satisfied, ∆ ≈ 96; discrete lines will finally emerge
out of the oscillations

F0(ξ) = −2
z
Ai′(−z) − 1 +

∫ ∞

−z

Ai(x)dx,

L0(ξ) = 1 −
∫ ∞

−z

Ai(x)dx,

where z := (3ξ/2)2/3. We also mention the ξ → 0 limits

F∞(ξ) =
4
3

ξ−2/3

21/3Γ (1/3)
− 1

3
+ . . . ,

L∞(ξ) =
1
3

− ξ2/3

22/3Γ (2/3)
+ . . . ,

F0(ξ) =
4
3
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21/3Γ (1/3)
− 2

3
+ . . . , (4.32)

L0(ξ) =
2
3

− ξ2/3

22/3Γ (2/3)
+ . . . ,

all up to terms of O(ξ4/3). The high-frequency densities
(4.16) thus read

pT
∞(ω) = αq�ω

√
δ∞

σγ2∞

(
− 2

z∞
Ai′(z∞) −
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)
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(4.33)

pL
∞(ω) = αq

m2
t c

4

�ω

√
δ∞
σ

∫ ∞

z∞
Ai(x)dx, (4.34)

where z∞ := (3ξ∞/2)2/3; cf. (4.8), (4.11), and (4.14).
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The Airy representation of the transversal density
(4.26) in the low-frequency regime is

pT
0 (ω) = αq�ω

√
δ0

σγ2
0

(
2
z0

Ai′(z0) +
∫ ∞
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+qT
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)
, (4.35)

and the longitudinal low-frequency distribution (4.27)
reads

pL
0 (ω) = αq
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, (4.36)

where z0 := −(3ξ0/2)2/3; cf. (4.8), (4.20), and (4.25) (z0
is defined negative). More explicitly,

z∞,0 = (ω/ωB)2/3
(

1 − ω2
b

ω2

)
δ
2/3
∞,0

γ2 . (4.37)

The notation is explained in the preceding subsections. At
the break frequency, the high- and low-frequency densities
join continuously, pT,L

∞ (ωb) = pT,L
0 (ωb). In fact, pT,L

0 (ω) −
qT,L
0 (ω) is the analytic continuation of pT,L

∞ (ω). (If we sub-
stitute γ0 → iγ∞, then δ0 → δ∞, ξ0 → i−3ξ∞, better
not to simplify, and z0 → z∞.) The ε := (ω − ωb)/ωb-
expansion of qT,L

0 gives in lowest order

qT
0 (ω) ∼ −4

5
αqmtc

2 γ2 − 1
γ5 ε2,

qL
0 (ω) ∼ 2

5
αqmtc

2 ε

γ3 , (4.38)

where we used γ−2
0 ∼ −(2/γ2)ε. There is no counter-

part to the qT,L
0 -terms in the upper frequency range. Con-

trary to the longitudinal density, the transversal density
is thus smooth, as the first derivatives of pT

∞ and pT
0 coin-

cide at ωb.
To cope with the slow convergence, we substitute∫ ∞

z∞
Ai(x)dx =

1
3

−
∫ z∞

0
Ai(x)dx,

∫ ∞

z0

Ai(x)dx =
1
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+
∫ −z0

0
Ai(−x)dx (4.39)

into the densities (4.33)–(4.36), and use, for large z∞,0,∫ z

0
Ai(x)dx ∼ 1
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2
3
z3/2 − π

4

)
.

This is particularly efficient in the low-frequency regime
(4.35) and (4.36). The plots in Figs. 1–14 give an overview

Fig. 4. Longitudinal spectral density pL
0 (ω), cf. (4.36), with

parameters as in Fig. 3. The dashed curve is the uniform dis-
tribution pL(ω) in (4.29), recovered in the limit of infinite or-
bital radius or vanishing field strength. At this Lorentz fac-
tor, the longitudinal oscillations become noticeably different
from the transversal cockscomb in Fig. 3. At the tachyon mass,
pL(mt)/αq ≈ 1.11 keV, and pL(ωct)/αq ≈ 0.25 keV at the crit-
ical frequency. The plots in Figs. 3 and 4 still coincide with the
transversal and longitudinal synchrotron densities (4.41) and
(4.42), respectively

of the transversal and longitudinal densities (4.33)–(4.36),
illustrating the different regimes determined by the field
strength and the Lorentz factor. In Figs. 1–4, we consider
electrons cycling in the surface magnetic field of the Crab
pulsar, with ultra-relativistic Lorentz factors. In Figs. 5–
14, we study the tachyonic cyclotron regime in the light
cylinder field of this pulsar, in particular the cross-over
from relativistic to non-relativistic electronic orbital en-
ergy. We refer to the figure captions for further discussion;
the parameters invoked in the captions to characterize the
shape of the densities are summarized in Sect. 5.

We finally relate the densities derived here to the ultra-
relativistic synchrotron densities, obtained as the leading
order in a 1/γ-expansion [1],

pT(ω) =
αqm
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Ai(x)dx, (4.42)

η(ω) := (ω/ωB)2/3

(
1 − ω2

sync

ω2

)
1
γ2 ,

ωsync := mtc
2γ/�. (4.43)

First, δ∞,0 → 1 if γ → ∞, cf. after (4.14) and (4.25),
and ωb ∼ ωsync; cf. (4.9). Thus we can identify z∞,0
in (4.37) with η(ω) defined in (4.43). In the upper fre-
quency range (ω > ωb), we therefore have mtc

2/(�ω) <
1/γ, and we can drop such terms. Thus the densities
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Fig. 5. Transversal tachyonic spectral density pT
0,∞(ω), cf.

(4.33) and (4.35), in the light cylinder field of the Crab pulsar;
cf. Table 6. In Figs. 5–14, we consider the mildly relativistic
and non-relativistic cyclotron regime. Higher Lorentz factors
(within the permissible range defined by k

(lc)
max = 4.15 in Ta-

bles 6 and 8) quickly wipe out the oscillations induced by the
magnetic field, B = 9.80 × 105 G, so that we are left with the
uniform distributions in (4.28) and (4.29) like in Fig. 1. Even
at a Lorentz factor this low, γ = 6.19, there are no oscillations
visible at the scale of this figure, but they get apparent along
the spectral slope in the close-up of Fig. 6. Depicted are pT

0 (ω)
in (4.35) for ω < ωb and pT

∞(ω) for ω > ωb, with the break
frequency at ωb ≈ 13.1 keV. In the latter case, the exponential
decay is so rapid, that pT

∞(ω) is just zero; even in the close-up
of Fig. 6 the slope is barely visible. The electronic orbital en-
ergy is E = 10−2.5 GeV (E and B are input), gyrofrequency,
gyroradius, and orbital speed read ωB ≈ 1.83 × 10−6 keV,
R ≈ 0.011 cm, and υ/c ≈ 0.987, respectively; cf. Sect. 5. The
criterion for continuum radiation is satisfied, ∆ ≈ 1.2 × 106;
cf. (4.30). pT(mt)/αq ≈ 1.03 keV at the spectral peak, and
pT(ωb)/αq ≈ 1.8 × 10−4 keV at the break frequency. The criti-
cal frequency ωct lies above the break frequency, cf. Table 6, in
contrast to the previous ultra-relativistic high magnetic field
examples. The parameters stated here apply to Figs. 5–8

Fig. 6. A close-up of the spectral break in Fig. 5. Tiny ripples
emerge due to the magnetic field. By zooming in further, we
find a fine structure similar to that of Fig. 10. The oscillations
vanish in the zero magnetic field limit, for uniform motion as
defined by pT(ω) in (4.28)

Fig. 7. The longitudinal spectral density pL
0,∞(ω), cf. (4.34)

and (4.36), with parameters as in Fig. 5. At the spectral peak,
we find pL(mt)/αq ≈ 1.09 keV. There is no discontinuity at the
break frequency ωb, just oscillations followed by exponential
decay; cf. the close-up in Fig. 8

Fig. 8. A close-up of the spectral break in Fig. 7 shows rapid
oscillations followed by exponential decay of pL

∞(ω) right at the
spectral break. At the break frequency, pL(ωb)/αq ≈ 0.116 keV.
Also compare Fig. 12

(4.33) and (4.34) coincide with (4.41) and (4.42), respec-
tively. We turn to the low-frequency regime. If ω � ωb,
then γ0 ∼ �ω/(mtc

2). There are two cases to consider.
If mtc

2/(�ω) � 1, then the qT,L
0 (ω)-terms in the low-

frequency densities (4.35) and (4.36) can be dropped. (σ
can be expanded in the indicated parameter, and δ0 ∼ 1,
cf. after (4.25), so that the qT,L

0 (ω)-terms are by a fac-
tor (mtc

2/(�ω))2 smaller than the terms containing the
Airy functions in (4.35) and (4.36).) This implies coin-
cidence in the regime mtc

2/� � ω � ωb. The second
case, mtc

2/(�ω) 	 1, means ξ0 ≈ 2mtc
2/(�ωB), cf. af-

ter (4.25), which implies ξ0 	 1; cf. (4.30). Therefore,
we may replace in (4.26) and (4.27) the spectral func-
tions by their asymptotic limits, so that we end up with
the Debye asymptotics (4.22) and (4.23). The conditions
ω � ωb and mtc

2/(�ω) 	 1 are sufficient to neglect the
sin B2n,0-terms in (4.22) and (4.23), as pointed out after
(4.29). Hence, in the frequency range ω � mtc

2/�, we are
left with the spectral densities (4.28) and (4.29) of freely
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Fig. 9. Transversal tachyonic spectral density pT
0,∞(ω), cf.

(4.33) and (4.35), in the light cylinder field of the Crab pulsar.
The Lorentz factor is further decreased as compared to Figs. 5–
8. The electronic orbital energy is E = 1 MeV, gyrofrequency
and gyroradius read ωB ≈ 5.80 × 10−6 keV and R ≈ 2.9 ×
10−3 cm, respectively; the orbital speed is υ/c ≈ 0.860. The
criterion for continuum radiation is satisfied, ∆ ≈ 3.2×105, as
suggested by the absence of visible modulations. In the surface
field, cf. Figs. 1–4, we have not considered such small Lorentz
factors, as this would have been in conflict with the criterion for
a continuous spectrum to arise, ∆ � 1. The break frequency
is at ωb ≈ 3.62 keV, and pT(ωb)/αq ≈ 2.2 × 10−4 keV. The
spectral peak is now shifted away from the tachyon mass. A
further decrease of the Lorentz factor into the non-relativistic
regime is admissible and can drive the break frequency below
the tachyon mass; cf. Figs. 13 and 14. In the given resolution,
the plot coincides with the uniform density pT(ω) in (4.28). A
close-up of the density at the spectral break is given in Fig. 10.
The parameters stated here apply to Figs. 9–12

Fig. 10. Close-up of the spectral break in Fig. 9. The rip-
ples are the only manifestation of the magnetic field, the finite
orbital radius that is, and are smoothed out in the zero mag-
netic field limit. A lesser resolution results in a pattern similar
to Fig. 6

moving sources. A similar reasoning applies to the ultra-
relativistic densities (4.41) and (4.42) to the same effect,
the curvature radiation being negligible in this regime. In
this way, we have demonstrated equivalence of the ultra-
relativistic synchrotron densities (4.41) and (4.42) with

Fig. 11. Longitudinal cyclotron density pL
0,∞(ω), cf. (4.34)

and (4.36), with parameters as in Fig. 9. The longitudinal
spectral maximum is still at the tachyon mass, pL(mt)/αq ≈
1.25 keV. The spectral break at ωb is continuous; cf. the close-
up in Fig. 12. Apart from tiny modulations, the plot coincides
with the uniform longitudinal density pL(ω) in (4.29)

Fig. 12. Close-up of the longitudinal density in Fig. 11. At the
spectral break, pL(ωb)/αq ≈ 0.37 keV. We find modulations
similar to Fig. 8 along the spectral slope

the γ 	 1 asymptotics of the densities (4.33)–(4.36). The
latter are applicable irrespectively of the magnitude of
the Lorentz factor, they extend the synchrotron densities
into the weakly relativistic regime, and even into the non-
relativistic cyclotron regime, provided condition (4.30) for
continuum radiation is met.

5 Tachyonic cyclotron and synchrotron
radiation from rotation-powered pulsars

We give a phenomenological discussion of the tachyonic
spectral densities derived in the previous section, study-
ing electrons and protons orbiting in the surface and light
cylinder fields of γ-ray and millisecond pulsars. The en-
ergy of the orbiting source particles and the magnetic
field strength are taken as input parameters. Most of the
notation has already been introduced at the beginning



R. Tomaschitz: Tachyonic cyclotron radiation 507

Fig. 13. The continuous non-relativistic cyclotron regime.
The transversal tachyonic spectral density pT

0,∞(ω), cf. (4.33)
and (4.35), is plotted in the light cylinder field of the Crab
pulsar, at a gyration energy of E − mec

2 ≈ 5.11 eV (input
γ − 1 = 10−5 and B = 9.80 × 105 G). The electronic orbital
speed is υ/c ≈ 4.47×10−3, gyrofrequency and gyroradius read
ωB ≈ 0.01135 eV and R ≈ 7.8 × 10−6 cm. The energy scale in
Figs. 13 and 14 is eV; the break frequency, ωb ≈ 9.615 eV, lies
far below the tachyon mass, and pT(ωb)/αq ≈ 2.49 × 10−4 eV.
The criterion for a continuous spectrum is met, ∆ ≈ 847; cf.
(4.30). Comparing to the previous figures, the smaller ∆ the
larger are the modulations, which provide the onset for discrete
line spectra; cf. Sect. 3. The magnetic field is manifested in the
oscillating fine structure. If smoothed out, the plot coincides
with the uniform density pT(ω) in (4.28)

of Sects. 2 and 4. We summarize it here in a dimension-
less way convenient for compiling the tables and setting
the scales of the figures in Sect. 4. The tachyon mass is
2.15 keV, the tachyon/electron and tachyon/proton mass
ratios are mt/me ≈ 4.21×10−3 and mt/mp ≈ 2.29×10−6,
respectively. The energy E = mc2γ of the orbiting source
particle is parametrized as E [GeV] = 10k, for electrons
and protons alike, so that the respective Lorentz factors
are γ(e) ≈ 1.957×103+k and γ(p) ≈ 1.066×10k. Apart from
the tachyon mass, there are four other energy scales de-
fined by the gyrofrequency ωB , cf. the beginning of Sect. 2,
the tachyonic break frequency ωb, cf. (4.9), the critical
photon frequency ωc and the critical tachyon frequency
ωct; cf. after (4.27).

Gyrofrequency and gyroradius scale as, cf. (2.1),

ωB [keV] ≈ 5.916 × 10−15B [G]/E [GeV], (5.1)

R = R̂υ/c,

R̂ [cm] ≈ 1.973 × 10−8/ωB [keV].

Contrary to Sects. 2 and 3, we use capital R for the or-
bital radius and write ω for �ω. Quantities with a hat
indicate that a power of υ/c has been split off, so that
they scale with E and B like in (5.1). If the source par-
ticle is ultra-relativistic, we can put υ/c ≈ 1. At low en-
ergy, we have to rescale the quantities listed in the tables
with the appropriate power of υ/c =

√
γ(e,p)2 − 1/γ(e,p).

There is no electromagnetic counterpart to the tachyonic
cyclotron densities, that is, to the superluminal contin-

Fig. 14. Longitudinal tachyonic spectral density pL
0,∞(ω) in

(4.34) and (4.36), with parameters as in Fig. 13. The energy
scales of the longitudinal density and its transversal counter-
part in Fig. 13 differ by some five orders at the spectral peaks.
The transversal power radiated in the non-relativistic cyclotron
regime is thus negligible as compared to the longitudinal con-
tinuum radiation. At the spectral break, pL(ωb)/αq ≈ 717 eV.
The spectral maximum is reached close to the spectral break,
immediately followed by exponential decay. The oscillations in-
duced by the magnetic field are absent in the uniform density
pL(ω) in (4.29), which is very nearly linear up to the spectral
break and then drops to zero

uum radiation from sources orbiting at low energy. Elec-
tromagnetic cyclotron emission, the non-relativistic limit
of synchrotron radiation, always gives rise to line spec-
tra, similarly as discussed in Sect. 3. Finally, there is a
lower bound on the Lorentz factor of the source par-
ticle, γ(e,p) >

√
1 + m2

t /(4m2
e,p), for the classical the-

ory to be applicable [16], but this is not very stringent,
γ(e) − 1 > 2.2× 10−6 and γ(p) − 1 > 6.5× 10−13, so that a
lower bound on the energy E [GeV] = 10k of the radiating
source is still defined by the particle mass, k

(e)
min ≈ −3.29,

and k
(p)
min ≈ −0.027 for protons; cf. Fig. 13.

The tachyonic break frequency scales as ωb = ω̂bυ/c,
where ω̂b = mtc

2γ, cf. (4.9), so that

ω̂
(e)
b [keV] ≈ 4.21 × 103E [GeV],

ω̂
(p)
b [keV] ≈ 2.29E [GeV], (5.2)

for electrons and protons, respectively. The critical fre-
quencies were introduced after (4.27). The critical photon
frequency reads ω

(e,p)
c [keV] = (3/2)γ(e,p)3ωB [keV], for

electronic/protonic sources. It does not scale with υ/c, and
we may substitute ωB , cf. (5.1), and γ(e) ≈ 1957E [GeV]
or γ(p) ≈ 1.066E [GeV]. The ratio κ = ωb/ωc of break fre-
quency and critical photon frequency scales as κ = κ̂υ/c,
where κ̂ := ω̂b/ωc. The critical tachyon frequency is
ωct =

√
κωb and scales as ωct = (υ/c)3/2ω̂ct, where

ω̂ct := ω̂
3/2
b /ω

1/2
c . We may write this more explicitly as

�ω̂ct =
√

2(mtc2)3E/(3�ceB) or, in dimensionless quan-
tities,

ω̂ct [keV] ≈ 3.347 × 107E1/2 [GeV]/B1/2 [G], (5.3)
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Table 5. Radiation from electrons orbiting in the surface fields: parameters determining the spectral densities. Surface field
B (input, taken from [32]), gyrofrequency ωB; cf. (5.1). k labels the electronic or protonic source energy, E (GeV) = 10k

(input). Critical photon frequency ω
(e)
c for electronic source particles; cf. after (5.2). Critical tachyon frequency ω̂ct,

independent of the mass of the source particle; cf. (5.3). In the case of mildly relativistic particles, ω̂ct has to be rescaled,
ωct = (υ/c)3/2ω̂ct. Here, υ/c =

√
γ2 − 1/γ is the speed of the orbiting source, where γ ≈ 1.957 × 103+k for electrons.

Gyroradius R̂, cf. (5.1), or R = R̂υ/c, if rescaled. κ̂(e) denotes the ratio ω̂
(e)
b /ω

(e)
c of tachyonic break energy and critical

photon energy, rescaled as κ = κ̂υ/c. The tachyonic break frequency is parametrized as ω̂
(e)
b (keV) ≈ 4.21 × 103+k,

ωb = ω̂bυ/c; cf. (5.2). The energy E (GeV) = 10k of the orbiting electrons ranges between k
(e)
min ≈ −3.29 and kmax. The

latter is determined by equating the critical tachyon frequency with the observed cutoff in the γ-ray spectrum; cf. Sect. 5.
kmax applies to protonic sources in the surface fields as well. The high-magnetic field pulsar PSR B1509–58 has a very
low cutoff energy of 10 MeV. The Crab pulsar (PSR B0531+21), PSR B1706–44, and PSR B1951+32 admit γ-ray spectra
extending up to 20 GeV. PSR J0218+4232 (at 5.85 kpc) is the only millisecond pulsar marginally detected in γ-rays

B (G) ωB (keV) ω
(e)
c (keV) ω̂ct (keV) R̂ (cm) κ̂(e) kmax

γ-ray pulsars
B1509–58 1.54 × 1013 9.11 × 10−2−k 1.02 × 109+2k 8.53 × 10k/2 2.17 × 10−7+k 4.10 × 10−6−k 6.14
Crab 3.78 × 1012 2.24 × 10−2−k 2.51 × 108+2k 1.72 × 101+k/2 8.83 × 10−7+k 1.67 × 10−5−k 10.7
B1706–44 3.12 × 1012 1.85 × 10−2−k 2.08 × 108+2k 1.89 × 101+k/2 1.07 × 10−6+k 2.03 × 10−5−k 12.0
B1951+32 4.86 × 1011 2.88 × 10−3−k 3.23 × 107+2k 4.80 × 101+k/2 6.86 × 10−6+k 1.30 × 10−4−k 11.2
ms-pulsar
J0218+4232 4.29 × 108 2.54 × 10−6−k 2.85 × 104+2k 1.62 × 103+k/2 7.78 × 10−3+k 1.47 × 10−1−k 5.58

Table 6. Parameters for cyclotron and synchrotron radiation from electrons orbiting in the light cylinder field B(lc) (input;
cf. [32]). The parameters are defined in the caption of Table 5. The energy of the cycling electrons is again parametrized
by E (GeV) = 10k, with k

(e)
min ≈ −3.29, and the tachyonic break energy reads ω̂

(e)
b (keV) ≈ 4.21 × 103+k, like in the

surface fields

B(lc) (G) ω
(lc)
B (keV) ω

(e,lc)
c (keV) ω̂

(lc)
ct (keV) R̂(lc) (cm) κ̂(e,lc) k

(lc)
max

γ-ray pulsars

B1509–58 4.22 × 104 2.50 × 10−10−k 2.81 × 102k 1.63 × 105+k/2 7.90 × 101+k 1.50 × 103−k −2.42

Crab 9.80 × 105 5.80 × 10−9−k 6.52 × 101+2k 3.38 × 104+k/2 3.40 × 10k 6.44 × 101−k 4.15

B1706–44 2.72 × 104 1.61 × 10−10−k 1.81 × 102k 2.03 × 105+k/2 1.23 × 102+k 2.33 × 103−k 3.99

B1951+32 7.38 × 104 4.37 × 10−10−k 4.91 × 102k 1.23 × 105+k/2 4.52 × 101+k 8.57 × 102−k 4.42

ms-pulsar

J0218+4232 3.21 × 105 1.90 × 10−9−k 2.14 × 101+2k 5.91 × 104+k/2 1.04 × 101+k 1.97 × 102−k 2.46

for electronic and protonic sources alike. In contrast, κ̂, ω̂b
and ω̂c depend on the mass of the source particle, so that
we write these quantities with superscripts (e, p) in the
tables. The gyrofrequency ωB , the rescaled gyroradius R̂,
cf. (5.1), and the rescaled critical tachyon frequency ω̂ct
do not depend on the mass if parametrized by E and B.

The upper edge Emax [GeV] = 10kmax of the source
energy, that is, the highest energy attained by electrons
and protons orbiting in the surface field, is inferred by
equating the critical frequency ωct(E) in (5.3) with the
upper cutoff of the observed γ-ray spectrum. The cutoffs
quoted below are in fact only lower bounds, and so is kmax
listed in Table 5, a lower bound on the maximal orbital
energy attained. The cutoff energy of the Crab pulsar is
taken as 4 GeV [21], the γ-ray spectra of PSR B1706–44
and PSR B1951+32 extend up to at least 20 GeV [22,23].
The actual cutoff is presumably higher, but very likely
below the TeV region [24–26]. The cutoff frequency of PSR
B1509–58 lies at about 10 MeV [27, 28]. As for the ms-

pulsar PSR J0218+4232, there is circumstantial evidence
for γ-rays up to 1 GeV [29,30].

The maximal energy of the source particles defined by
kmax is much higher than the estimates in [2], which are in
the low TeV range for the surface fields. In this reference,
we considered electronic power-law averages and source
counts dominated by the peaks of the spectral densities.
Here, we focus on the fringes of the densities. The tachy-
onic spectral densities are much more extended than the
electromagnetic synchrotron densities, where the exponen-
tial decay starts right at the spectral peak. In Fig. 1, the
peak of the tachyonic synchrotron density is located at the
tachyon mass, at 2 keV, whereas the critical frequency lies
in the low GeV range. At lower Lorentz factors, the occa-
sionally rather pronounced oscillations in the high-energy
tails of the tachyonic densities, cf. Figs. 2–4, are absent
in the electromagnetic counterpart, there is no photonic
high-energy tail at all, just rapid decay after the spec-
tral peak is reached. The high-energy tails of the tachy-
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onic synchrotron densities suggest fringe particles cycling
in the surface fields at energies reaching kmax = 12, the
1021 eV region; cf. Table 5. These particles can be electrons
as well as nuclei, since the critical frequency ωct(E) is in-
dependent of the mass of the source particles, and so is the
cutoff Emax. If subjected to the voltage gap between the
surface and light cylinder fields [31], they can spiral out
of the magnetosphere as ultra-high-energy cosmic rays.

6 Conclusion

We have discussed tachyonic line spectra of hydrogenic
ions and muonic atoms; cf. Sect. 3. The lines are very
dim as compared to electromagnetic spontaneous emis-
sion, the line strength being weaker by about a factor of
αq/αe ≈ 10−11 for the low-lying harmonics. The tachyonic
quanta are partially longitudinally polarized, the lines are
radiated in multiples of the gyrofrequency as listed in Ta-
ble 1, clearly separated from the electromagnetic transi-
tion frequencies. Ionization cross-sections can be used to
discriminate longitudinal tachyons from photons, as the
transversal and longitudinal sections are peaked at differ-
ent scattering angles [33,34].

Continuum emission in the surface fields of γ-ray pul-
sars is discussed in Sect. 5. By equating the critical fre-
quency with the observed spectral cutoff, we inferred the
highest orbital energy attained in the surface fields. We
concluded that γ-ray pulsars are a possible source of
ultra-high-energy cosmic rays, capable of accelerating nu-
clei across the ankle of the cosmic ray spectrum into the
1021 eV region. As for extragalactic sources, tachyons do
not interact with microwave and radio photons, so that
there is no attenuation of tachyonic γ-rays.

We have here scrutinized very specific systems and a
highly specialized radiation mechanism. We conclude by
outlining the broader context, the general setup of tachy-
onic radiation theory, and contrast it with the electromag-
netic counterpart, without going into any details, however.
We will sketch the main features of the absorber theory
mentioned in the Introduction, in particular the implied
non-relativistic space conception.

In Sect. 2, we stated the tachyonic flux vectors gener-
ated by circularly orbiting charges, and we indicate here
the basic steps in deriving them. The Lagrangian of the
superluminal radiation field coupled to the subluminal
source particle reads L = Ltach + Lelec, where

Ltach = −1
4
FαβFαβ +

1
2
m2

t AαAα,

Lelec = −m
√

−ηαβẋαẋβ + qAαẋα. (6.1)

The sign conventions are ηαβ = diag(−1, 1, 1, 1) and
m2

t > 0. Estimates for the tachyon mass mt and the tachy-
onic charge q, by which the tachyon field Aµ is minimally
coupled to the electron, are given in Sect. 2, and � = c = 1.
We find the field equations, (� + m2

t )Aµ = −jµ and
Aµ

,µ = 0, where the sign convention for the d’Alembertian

is � = ηµν∂µ∂ν . Wave solutions are obtained by applying
the time symmetric Green function to the 4-current [5],

Asym
µ (x) =

∫
Gsym(x − x′)jµ(x′)dx′,

(� + m2
t )G

sym(t,x) = −δ(t)δ(x),
j0 = qδ(x − x(t)), j = qvδ(x − x(t)),
Gsym(t,x) (6.2)

=
1
4π

δ(r2 − t2) − mt

8π
θ(r2 − t2)

J1(mt

√
r2 − t2)√

r2 − t2
.

There is no retarded or advanced Green function sup-
ported outside the lightcone, superluminal wave fields in
a local Minkowskian setting are time symmetric and thus
acausal. To break this symmetry, an external non-local
absorber field is required.

Once the time symmetric field is calculated, the re-
tarded and advanced components of Asym

µ = 1
2 (Aret

µ +
Aadv

µ ) can be identified asymptotically, at large distance
from the radiating source. The explicit knowledge of the
asymptotic retarded radiation field suffices to calculate the
line spectra and the spectral densities. The transversal and
longitudinal flux vectors in Sect. 2 are found by substitut-
ing the asymptotic Aret

µ into the T n
0 components of the

energy-momentum tensor, T ν
µ = −FλµFλν + m2

t AµAν −
δν
µLtach [1].

The asymptotic Aret
µ can be extracted from the time

symmetric solution Asym
µ of the wave equation, without

reference to the cosmic absorber field. However, the re-
tarded component is not a solution of the wave equation,
there is no retarded Green function. This requires the ex-
istence of an external absorber, capable of turning the
advanced component of the time symmetric field into the
missing half of the retarded field, Aret

µ = Asym
µ + Aabs

µ .
The absorber field is generated by uniformly dis-

tributed microscopic oscillators of the cosmic absorber
medium [35], via an instantaneous non-local interaction
triggered by the advanced component of the time sym-
metric field. We do not need to know the details of this
interaction, as we can extract the retarded field from the
time symmetric solution of the wave equation, quite within
the local Minkowskian framework. The rest frame of the
absorber medium is the comoving galaxy frame, in which
the oscillators have constant space coordinates.

When introducing a cosmic absorber medium as space
structure, the most important thing is to keep it simple, to
efficiently do physical modeling in it. Here, we have scruti-
nized the cyclotron and synchrotron mechanism, which is
already in electrodynamics amongst the technically most
difficult radiation problems, solved by systematic asymp-
totic summation of the multipole expansion. We have done
this for the Proca field with negative mass square as well,
but it is unlikely that we could have carried that through
had we needed to explicitly take into account the mi-
croscopic space structure, the oscillators of the absorber
medium. Instead, we invoke the absorber like the Mach
principle is invoked in Newtonian mechanics, by its ef-
fect only. This principle asserts that the inertial force is
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Table 7. Parameters determining the spectral densities of protons in the surface
and light cylinder (lc) fields. The parameters listed in Tables 5 and 6 for electrons
remain valid for protonic source particles, with the exception of the critical photon
frequency ω

(p)
c , the tachyonic break energy ω̂

(p)
b (keV) ≈ 2.29×10k, and their ratio

κ̂(p) = ω̂
(p)
b /ω

(p)
c . The source energy is E (GeV) = 10k, so that the scale factor

υ/c (orbital velocity) is now calculated with γ ≈ 1.066 × 10k; cf. the caption of
Table 5. The lower limit on the source energy, k

(p)
min ≈ −0.027, is set by the proton

mass, and the upper edge kmax is listed in Tables 5 and 6 for the surface and light
cylinder fields, respectively

ω
(p)
c (keV) κ̂(p) ω

(p,lc)
c (keV) κ̂(p,lc)

γ-ray pulsars
B1509–58 1.66 × 10−1+2k 1.38 × 101−k 4.54 × 10−10+2k 5.05 × 109−k

Crab 4.06 × 10−2+2k 5.64 × 101−k 1.05 × 10−8+2k 2.17 × 108−k

B1706–44 3.35 × 10−2+2k 6.83 × 101−k 2.92 × 10−10+2k 7.84 × 109−k

B1951+32 5.22 × 10−3+2k 4.39 × 102−k 7.93 × 10−10+2k 2.89 × 109−k

ms-pulsar
J0218+4232 4.61 × 10−6+2k 4.97 × 105−k 3.45 × 10−9+2k 6.64 × 108−k

Table 8. Lorentz factors of cosmic rays originating as synchrotron elec-
trons and protons in the surface and light cylinder fields. γ(e,p)(kmax) is
the upper bound on the Lorentz factors of electrons/protons cycling in
the surface fields, as determined by the kmax-cutoffs listed in Table 5. In
the surface fields, electrons as well as protons can reach energies in the
1019–1021 eV region, above the ankle of the cosmic ray spectrum.The
Lorentz factors γ(e,p)(k(lc)

max) refer to the much smaller cutoff energies
k

(lc)
max in the light cylinder fields; cf. Table 6

γ(e)(kmax) γ(e)(k(lc)
max) γ(p)(kmax) γ(p)(k(lc)

max)

γ-ray pulsars

B1509–58 2.70 × 109 7.44 1.47 × 106 –

Crab 9.81 × 1013 2.76 × 107 5.34 × 1010 1.51 × 104

B1706–44 1.96 × 1015 1.91 × 107 1.07 × 1012 1.04 × 104

B1951+32 3.10 × 1014 5.15 × 107 1.69 × 1011 2.80 × 104

ms-pulsar

J0218+4232 7.44 × 108 5.64 × 105 4.05 × 105 307

generated by some kind of instantaneous interaction with
the cosmic matter distribution. However, when calculating
trajectories in Newtonian mechanics, it is not necessary to
know the details of this interaction, as the inertial force is
known beforehand, even though it remains unexplained.

The local emission process is time symmetric, for every
outgoing mode there is an identical incoming counterpart,
retardation is achieved by superposition with the external
absorber field. There is no radiation damping, the energy
radiated is supplied by the absorber medium. (The in-
coming advanced field means energy gain, the outgoing
retarded component energy loss. The net energy balance
for Asym

µ = 1
2 (Aret

µ + Aadv
µ ), the field generated by the

source particle, is thus zero. The subtracted energy gain
in Aabs

µ = 1
2 (Aret

µ − Aadv
µ ) means energy loss, so that Aabs

µ

carries the energy of Aret
µ . No need to argue this in neg-

ative energies.) As in electrodynamics, we end up with
retarded wave propagation, but the radiation mechanism

outside the lightcone is quite different, as the retarded
Green function is replaced by a time symmetric one, and
we have to acknowledge the existence of the absorber field.
The latter constitutes the fundamental difference between
electromagnetic and superluminal wave propagation. The
cosmic absorber destroys the seemingly close analogy (6.2)
of electromagnetic and tachyonic wave propagation at an
early stage, even though the retarded tachyonic wave fields
can be calculated without knowledge of the absorber field
(asymptotically at least, when positive and negative wave
modes clearly emerge in Asym

µ , otherwise we need to know
the absorber field to find Aret

µ ). We exemplified the energy
balance with superluminal cyclotron radiation. This radi-
ation is not accompanied by atomic transitions, there is
no energy transfer from the atom to the tachyons, as the
energy radiated stems from the absorber. By contrast, if
a tachyon is absorbed in an atomic transition [35], there
is equal probability of reemission in the reverse transition
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due to the symmetry of the Einstein coefficients, and there
is no energy exchange with the absorber.

The absorber medium defines an absolute space, a uni-
versal frame of reference. We list some implications of
this. There is the residual radiation in the limit of infi-
nite gyroradius, cf. (4.28) and (4.29); charges in straight
uniform motion in the absorber frame still radiate super-
luminal quanta, so that uniform motion and rest become
distinguishable states [16]. The reference frame provided
by the absorber medium is also necessary to define lon-
gitudinal and transversal wave modes, as Lorentz boosts
mix them due to the spacelike wave vector [35]. Apart
from advanced wave modes generated by the time sym-
metric Green function (which are cancelled by the ab-
sorber field), there is another even more generic source
of causality violation arising in a relativistic spacetime
conception. Lorentz boosts interchange the time order of
spacelike connections, so that the time order of cause and
effect is not preserved in different inertial frames. The rest
frame of the absorber is once more required to define a uni-
versal cosmic time order of cause and effect to which every
observer can relate [36].

The Lagrangians (6.1) are covariant, but the relativis-
tic interpretation of Lorentz invariance is replaced by the
absolute spacetime defined by the absorber [5, 37]. Proper
account of this universal frame of reference must also be
taken when quantizing superluminal wave fields, to obtain
an unambiguous vacuum. Lorentz boosts mix positive and
negative frequency modes (with spacelike wave vector),
so that there is no relativistically invariant vacuum state.
The cosmic absorber frame is needed to define a consistent
occupation number representation [35]. The spin-statistics
theorem is not applicable outside the light cone, and the
classical energy functional T 0

0 , cf. after (6.2), is indefinite.
Once the longitudinal modes are identified in the absorber
frame, they are quantized in Fermi–Dirac statistics to ob-
tain a positive definite energy operator [33, 34]. Here, we
have considered classical spectral densities; the quantiza-
tion of tachyonic cyclotron and synchrotron radiation will
be given elsewhere.
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